
Producing Satisficing Solutions to Scheduling Prolhns:
An Iterative Constraint Relaxation Approach

Steve Chicn
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Drive, Pasadena, CA 91109-8099

chien@aig.jpl. nasa.gov

. .
Abstract

One drawback to using constraint–propagation in plan-
ning and scheduling systems is that when a problem has
an unsatisfiable set$ of constraints such algorithms typi-
cally only show that no solution exists. While, technical-
ly correct, in practical situations, it is desirable in these
cases to produce a satisficing solution that satisfies the
most important constraints (typically defined in terms of
maximizing a utility function). This paper describes an
iterative constraint relaxation approach in which the
scheduler uses heuristics to progressively relax problem
constraints until the problem becomes satisfiable. We
present empirical results of applying these techniques to
the problem of scheduling spacecraft communications
for JPLINASA antenna resources.

1 INTRODUCTION
Constraint Satisfaction Problems (CSP) area general for-

malism for representing a wide variety of problems ranging
from scheduling, to planning, to design applications (Dechter
1992). Many approaches to solving CSP problems use a tech-
nique called constraint propagation in which assignments of
values to some variables and constraints are used to infer nec-
essary values of other variables in order to allow the constraint
to bc satisfied. Unfortunately, in many real–world CSPS, the
entire set of constraints specified as the goal cannot be satis-
fied, In these cases, the goal is usually to satisfy as many
constraints as possible, or to maximize some function of the sa-
tisfied constraints (e.g., representing the value of the satisfied
constraints, etc.).

This paper describes an approach to constructing satisfic-
ing sohrtions to CSP problems that still relies heavily on
constraint propagation techniques. In this approach, the
constraint-propagation problem-solver (CPPS) serves as the
basis for the larger iterative problem solver. In this approach,
the basic problem-solver attempts to solve the CSP problem,
and if failing, provides key information on sets of inconsistent
constraints that represent difficult to satisfy sets of constraints.
Using this information, the problem-solver then uses heuris-
tics to(1) pick constraints to relax and (2) determine how to re-

tortions of this work were performed by the Jet Propulsion Lab-
oratory, California Institute of Technology, under contract with
the National Aeronautics and Space Administration and portions
at the Beckman Institute, University of Illinois, under National
Science Foundation Grant NSF–lR1-92-09394.

Jonathan Gratch
Beckman Institute

University of Illinois
405 N. Mathews Av,, Urbana, 11.61801

gratch@cs.uiuc.edu

lax these constraints. The problem-solver then is called
recursively on the reduced problem. This process continues
until enough constraints have been relaxed to allow the prob-
lem-solver to SOIVC the partial problem. This flow of control
is shown in Figure 1 below.

reduced constraints

Initial
Constraints
(unsatisfiable)‘d”zF;&

Yes–Done
Figure 1: Iterative Constraint Relaxation

This iterative relaxation approach to solving CSP prob-
lems has been implemented and tested on a constraint–based
scheduling system LR–26R that constructs schedules allocat-
ing NASA/JPL antennas for communication to earth-orbitting
satellites, While the description of our approach in this paper
refers to a specific problem formulation and scheduling ap-
plication, our general approach applies to solving the general
class of constraint satisfaction problems. While considerable
effort has been devoted to CSP approaches to scheduling (Sa-
deh & Fox 1990, Minton et, al, 1992, Smith& Cheng, 1993),
our approach differs in that it is a flexible approach designed
to allow incorporation of a wide variety of heuristic strategies.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the specifics of the application to scheduling
antenna resources and how these problems are formulated and
solved as constraint satisfaction problems. Section 3 describes
the preliminary results of testing the resulting scheduler and
relaxation heuristics on DSN data. Section 4 discusses open
research issues and future work and summarizes the main
points of the paper.

2 DSN SCI+EDULING AS CSP
The Deep Space Network (DSN) scheduling problem is a

complicated real world task that has proved challenging to
state-of-the-art scheduling techniques, The problem is to allo-
cate communication requests bet ween earth-orbiting satellites
and the three 26-nleter antennas at Goldstone, Canberra, and
Madrid. These antennas make up part of the DSN that is re-
sponsible for communication with earth-orbiting and inter-
planetary spacecraft. Each satellite has a set of constraints,
called project requirements, that define its communication
needs. For example, the Nimbus-7 satellite must have at least
four 15-nlinute communication slots per day, and these slots

. .

cannot be greater than five hours apart. TWO factors compli -
ca~e the problem. First, antennas are a limited resource – two
satellites cannot communicate with the same antenna at the
same time. Second, satellites can only communicate with cer-
tain antennas at certain times, depending on their orbits.

Scheduling is done on a weekly basis. A weekly schedul-
ing problcm is defined by three elements:

(1) the set of satellites to bc scheduled,
(2) the constraints associated with each satellite, and
(3) a set of time periods specifying all temporal intervals

when a satellite can legally communicate with an antenna.
Two time periods conflict if they use the same antenna and
overlap in temporal extent, A valid schedule specifies a non-
conflicting subset of all possible time periods where each proj-
ect’s requirements are satisfied.

2.1 TIIE LR-26 SCHEDULER SYSTEM
1.1<-26 is a heuristic approach to the scheduling problem

@cll 1992) developed at the Jet Propulsion Laboratory.
1.R–26 is implemented so that it can bc run with a variety of
heuristic control strategies because it is believed that different
heuristics will perform better in different contexts and this
flexibility will allow for better overall performance. Schedul-
ing in 1.R–26 is formulated as a 0-1 integer programming prob-
lem (Taha 1982) – a methodology for finding an assignment to
i ntegcr variables that maximizes the value of an objectivejiinc-
tion, subject to a set of linear constraints. The objective func-
tion characterizes the “value” of the solution. Many constraint
satisfaction problems (CSP) are easily cast as irrtegerprogram-
ming problems (Mackworth 1992). In the DSN domain, time
periods are treated as 0-1 integer variables (O if the time period
is excluded from the schedule or 1 if it is included), the objec-
tive is to maximize the number of time periods in the schedule
subject to the project requirements and temporal conflict
constraints that are expressed as sets of linear inequalities.

Returning to the Nimbus-7 satellite example, Nimbus-7
must have at least four 15-minute communication slots per
day, and these slots cannot be greater than five hours apart,
Suppose there are 7 possible 15 minute time slots to schedule
Nimbus-7 on a particular day, represented by the variables
V]–V7. Furthermore, VI uses the Goldstone antenna, as dots
the overlaps with a possible time slot Vg that involves the Gold-
stone antenna communicating with another satellite. The first
constraint, that there must bc four time slots per day would be
represented by the constraint that VI + vz + V3 + V4 + vs + V6
+V72 4. The second constraint, that the antenna can only com-
municate with a single spacecraft at a time might be repres-
ented by the constraint V1 + V8 S 1.

Integer programming is NP-hard, and the size of our sched-
uling problems makes the conventional approach impractical:
a typical problem has approximate] y 650 variables and 1300
constraints. LR-26 embodies a heuristic approach called lcr-
grangian relaxation (Fisher 1981). Lagrangian relaxation re-
quires identifying a set of constraints that, if removed, make
the problem computationally easy. These constraints are “re-
laxed,” meaning they no longer act as constraints but instead
modify the objective function. A relaxed objective function is

automatically generated such that satisfying relaxed
constraints increases the value of the relaxed solution, There-
laxed prob]cm is by definition easy to solve and often finding
the highest value relaxed solution SOIVCS the original problem.
I~urthcrmore, each relaxed constraint has a weight associated
with it when it is added to the objective function. By systemati-
cally adjusting these weights and re-solving the relaxed prob-
lem, a solution to the unrelaxed problem is often efficiently
discovered. Even if the unrelaxed problem cannot be solved
in this manner, this weight adjustment cycle can move the
scheduler closer to a solution, allowing the unrelaxed solution
to bc discovered with lCSS search. IX-26 relaxes inter-antenna
constraints. This representation facilitates an efficient implicit
representation of temporal conflict constraints, which makeup
more than half of all constraints in a typical prob]em.

LR-26 combines lagrangian relaxation with standard
constraint satisfaction search techniques, The scheduler per-
forms depth-first search through a space of partial schedules.
A variable is assigned a value of in (or 1) if the associated time
period is included in the partial schedule, CM (or O)if it is ex-
cluded from the partial schedule. The scheduler constructs a
complete schedule by incrementally extending the partial
schedule. First it attempts to completely extend the schedule
using the lagrangian relaxation method. If the relaxed solution
satisfies all constraints it is returned. Otherwise, a set of pos-
sible extensions to the partial schedule is created and these are
recursive explored. Extensions are created by choosing an un-
satisfied constraint, identifying a set of uncommitted variables
in the constraint, and assigning possible values to these vari-
ables. The set of extensions are placed on a stack to implement
the depth-first search. The search continues until a solution is
uncovered or a time-bound is reached. Currently the scheduler
implements a time-bound oft wo CPU niinutes. Any problem
not solved within this bound is deemed unsolvable.

Thus LR-26 can bc viewed as a recursive application of
four control decisions:

(1) decide on a lagrangian weight adjustment scheme, ter-
minating if a viable solution is found; otherwise

(2) choose an unsatisfied constraint,
(3) determine a set of extensions to the partial schedule

that satisfy the constraint, and
(4) determine an order to explore these extensions.

2.2 1JNSATISFIAIIL13 PROIILEMS
For many of the more congested DSN scheduling problems

the set of project constraints may not be satisfiable (e.g., not all
of the projects will get their requested antenna time). In these
cases, the I-R–26 scheduler will not be able to find a valid
schedule because none exists. In some of these cases, LR–26
will be able to prove that no valid schedule exists and will pro-
vide this information. In other of these cases, LR-26 will sim-
ply exceed resource bounds for the scheduling problem
without finding any solution. Unfortunately, from an opera-
tions standpoint, not finding a solution is not very useful.
Ideally under these circumstances the scheduler would pro-
vide a schedule that satisfied as many of these constraints as
possible. This goal can be made more concrete by assigning

.,

a v~luc to each constraint and the vaIuc of a schedule is dctcr-
mincd by summing the value of every constraint it satisfies.
While this simple model of schedule value or schedule quality
is the one wc usc in the implementation and empirical tests de-
scribed in this paper, we describe current work on more expres-
sive models in the discussion section.

To ground the concept of unsatisfiable constraints, consid-
er the following constraints:

V1+V2+V3 22 (A l) V7+V2Sl (c l)
V2+V3+V4>2 (A2) V7+V3<I (C2.)
v~ +- V4 i- V5 22 (A3) vg+v3<1 (C3)
V6+- v7>1 (B I) vg+-v4<1 (C4)
v7+-vg21 (112) V9+V4<I (C5)
vg+-v921 (n3) V9+V5SI (C6)

This example will bc used later to illustrate dead-end analysis
and constraint relaxation in LR-26R.

In this case, constraints A 1–3 indicate that two out of every
three consecutive views VI–V5 must be in the schedule, a case
that frequently occurs when a satellite has a constraint that it
must have N views in every time period of duration M.
Constraints B 1 –3 indicate a similar constraint that for views
VG–V8. Constraints Cl -6 indicate that V7 conflicts with V2 and
v3, vg conflicts with views V3 and v4, and that V9 conflicts with
V4 and V5. This set of constraints is unsatisfiable because
constraint 112 indicates that VT or Vfj must be in the schedule.
If V7 is in the schedule, Al is unsatisfiable, since both vz and
v~ conflict with V7, and Al indicates that 2 out of VI, V2, and
V3 must be in the schedule. If V8 is in the schedule, V3 and V4

must not be in the schedule, and A2 requires that two of v2, v3,
and V4 must be in the schedule.
2.3 CONSTRAINT RELAXATION

1.R–26R extends LR-26 in that it can relax schedule
constraints, LR–26R begins by attempting to find a solution
to the complete version of a scheduling problem (e.g., with all
constraints) by calling LR–26. If I-R–26 cannot find a solution
(e.g. either exceeds the resource bound or shows that the
constraints are unsatisfiable), LR-26R selects a set of
constraints to relax. This relaxed scheduling problem is then
given to LR-26 for attempted solution. This process proceeds
until either I.R–26 is able to solve a relaxed problem or a bound
on the number of relaxable constraints is reached.

Two types of constraints in LR–26 are considered for re-
laxation: set constraints and general constraints. A set
constraint specifics that at least one of a set of variables should
have the value IN. Set constraints are relaxed by elimination
from the schedule. B 1–3 from the example above are set
constraints, General constraints specify that a weighted sum
of a set of variables must be greater than a fixed threshold (e.g.,
IOV1 + 8V12+ Zv]-j 5v32+]2Vfj4 > 11). General constraints are
relaxed by decrementing the right side constant. Relaxing a
general constraint multiple titnes is valid until the right hand
side becomes zero or negative and the constraint is eliminated.
l’hc constraints A 1–3 above are general constraints.

Because the project constraints represent important opera-
tional goals for the projects, finding schedules that satisfy as
many of the constraints as possible is an important problem.

The relaxation module implements a number of heuristics for
selecting heuristics to relax. Determining effective heuristic
strategies for specific domains and problem distributions is
therefore of great importance.

1,1<–26 reaches a dead.+md in the scheduling process when
it is able to show a set of constraints cannot be satisfied. This
occurs when a number of search decisions (e.g. forcing vari-
ables IN or OUT) and constraint propagation detects an unsat-
isfiable set of constraints. If a set of dead-ends is spanning
(e.g., every variable assignment is an extension of a dead-end)
then LR-26 has proven that no solution exists for the set of
constraints. In other cases LR-26 will find a number of dcad–
ends and exceed resource bounds. In these cases, there maybe
a solution to the current set of constraints but it may require an
unacceptable amount of time to find it.

Analysis of the dcad~nds found by 1.R–26 can be helpful
in determining which constraints are good candidates for re-
laxation to allow for (partial) solution of a scheduling problem.
Thus, when solving a problem, LR-26 records information on
dead-ends found in terms of the participating contexts (vari-
ables forced IN or OUT) and constraints (those constraints
that, in combination, are unsatisfiable). This information can
then be used to direct the constraint relaxation process (this in-
formation can be tracked using Reason Maintenance Systems
(McDern~ott 1991)).

Returning to the example constraints described above, the
scheduler might first search by attacking constraint 132. This
would lead to determining two extensions to the schedule, one
comtnitting to having V7 IN in the schedule, and then commit
to having V7 OUT of the schedule, leading to the following
lines of constraint propagation.
V7 IN the schedule
V7 IN implies that V2 and V3 are OUT by constraints Cl and C2
V2 and V3 both OUT implies that constraint Al is unsatisfiable
V7 OUT of the schedule
V7 OUT implies that vg must be IN by constraint B2
vg IN implies that v? and V4 both OUT by C3 and C4
V3 and V4 both OUT-inlplies that constraint A2 is unsatisfiable

l-.cading to the following dead-end contexts:
1) the context {(v7 IN)) implies that the set of constraints {Cl,
C2, Al } is inconsistent, and
2) the context { (V7 OUT) } implies that the set of constraints
{112, C3, C4, A2) is inconsistent.
These contexts have the general form that in context of vari-
able assignments V (a conjunction of individual variable as-
signments), the conjunction of a set of constraints C is shown
to be unsatisfiable. In the case(1) above, the context of V7 be-
ing assigned the value IN, means that the conjunction of the
constraints {Cl, C2, Al } cannot be satisfied. In this example,
because the contexts (1) and (2) above cover all possible vari-
able assignments (e.g., in any complete schedule, V7 must be
either IN or OUT), the constraint propagation algorithm has
shown that the set of constraints {Al, A2, B2, Cl, C2, C3) is
unsatisfiable without any assumptions on variable assign-
ments. This dead-end information can be extremely useful in
guiding heuristics for determining which constraints to relax.

. .

For example, onc strategy might be to pick a constraint from
thi SC[{Cl, C2, Al } to relax and attempt to find a solution
where V7 is IN the schedule.

1.1<–261< can relax constraints by either focussing on dcad-
cnds or individual constraints. In the case of focussing on
dead-ends, LR-–26R relaxes constraints as follows:

(1) select a set of dead-ends to focus upon using mea-
sures evaluating the constraints and contexts involved in the
dead-ends; next

(2) dctcrminc how many constraints to relax in the dcad-
cnd(s) selected; then

(3) for each constraint to bc relaxed, dctcrminc how it
should be relaxed.

In the case of focussing upon individual constraints,
1.R–26R relaxes constraints as follows:

(1) order the constraints appearing in dead-ends based
upon the number of dead-rids in which they appear, the con-
texts in which they appear, the inconsistent sets in which they
appear, and other properties of the constraint graph and con-
texts involved in the dead-ends; next

(2) determine how many constraints to relax; then
(3) for each constraint to be relaxed, determine how it

should be relaxed.
At each of these decision points, LR–26R uses a heuristic

method to reach a decision. Once the appropriate constraints
have been relaxed, LR-26R calls LR–26 with the relaxed
problem continuing to relax additional constraints until either
LR-26 can solve one of the relaxed problems or a bound on the
number of constraint relaxations is exceeded.

2.4 IU.EXIBLE PROBLEM-SOLVING AND EX-
]’ECTED UTILITY

General problem solving tasks such as CSP problem-solv-
ing are inhcrentl y complex. Nevertheless, in many practical
situations these complex problems have reasonable solutions
(e.g. traveling salesman problem (Held 1970)). Often heuris-
tic approaches can take advantage of the structure of a domain
or the distribution of problems to formulate effective solutions
to complex problems. A flexible problem-solving architec-
ture such as LR–26R can allow for a wide variety of heuristic
approaches to be applied, resulting in a better solution to the
practical problcm at hand,

If one defines a utility function U which takes a control
strategy and a problem and returns a real–valued number, one
can now compare alternative problem-solving strategies to
determine the best for a given distribution of problems. The
goal of adaptive problem-solving can be expressed as; given
a problem distribution D, find STRATSO as to maximize the ex-
pected utility of PE where expcctcd utility is defined as:

~ U(PE(STRA7),d) X probability(d).
dEtI

1.R-26 and LR-26R have several control points relevant to
searching for a viable schedule and relaxing constraints. Each
of these control points is a point where a heuristic strategy (or
composition of heuristic strategies) can bc inserted to alter
(and hopefully improve) the performance of the scheduler.

These control points correspond to the choice points described
in Section 2.1 control decisions (1)–(4) and Section 2.3 control
decisions (1) – (3) for dcadmd focussing and (1) – (3) for in-
dividual constraint focussing,

Measures of utility for solutions produced by LR–26 might
bc influenced by time to produce a solution, or measures of the
quality of the plan, such as number of constraints satisfied in
a certain way, corresponding to the cost of implementing the
solution, robustness, simplicity, etc. Measures of utility for
solutions produced by 1.R-26R might bc functions of the
constraints that were relaxed in finding a solution as well as the
amount of time required to find a solution.

S IIXI’ERIMENT ANI) RESULTS
This section describes the results of applying our general

approach to CSP problem--solving and scheduling to the spe-
cific problcm of scheduling DSN antenna resources. Wc first
describe the problem distribution used to perform the evalua-
tion, and the several versions of the problem involved. Next,
the search heuristics for LR–26 and relaxation heuristics for
LR-26R are described. Then we dcscribc the results of apply-
ing LR–26 and LR-26R to the different versions of the DSN
scheduling problem.

3.1 PROBLEM I)ISTRIBUTION
Ideally, we would use the identical problem distribution

faced by the human experts in this domain. Unfortunately, not
all of this information is in electronic form and thus is difficult
to present to the LR-26 scheduler. There does, however, exist
a large electronic database of information for many of the proj-
ects in the deep space network, We used this database to
construct a large body of scheduling problems that are repre-
sentative of, if not identical to, the type of problems faced by
the human schedulers. Problems are generated by randomly
choosing combinations of projects from the available data with
requirements and time periods representing current and future
projected requirements and time periods of actual projects.
Eight projects available in this format means a large number
of combinations of project data, and thus no shortage of test
problems. The primary difference between these and actual
problems lies in the particular combinations of projects that
appear in the schedule.

Given this distribution of scheduling problems, we defined
three versions of the scheduling problem, DSN–S, DSN–US,
DSN-R. The DSN-S problem set consists of all of the prob-
lems that LR–26 can solve with some heuristic strategy (solv-
ing a problcm indicates either finding a solution orproving that
no solution exists). The DSN–US is a superset of DSN–S and
is all the problems in the DSN distribution without allowing
constraint relaxation (e.g., DSN-US distribution includes
problems for which all implemented heuristic strategies ex-
ceeded resource limits without finding a solution or showing
that no solution existed). DSN–R consists of the same prob-
lems as DSN–US, but the scheduler is allowed to relax
constraints in order to solve the problems and the goal is to
solve the problems relaxing the fewest constraints (as deter-
mined by some metric as described below),

● ’

.’

X+]IX]’]2CTII]) UT]].ITY
Depending upon the problem distribution being evaluated

(e.g., DSN-S, DSN-US, or DSN-R), differing utility func-
tions arepossiblc. For the DSN-S distribution, possiblcutility
functions arc the amount of time required to generate a sched-
ule (or to prove that no schedule exists), and possible measures
of schedule quality (such as number of views included in the
schedule, robustness of the schedule, cost to implement the
schedule, etc.), Additionally, utility metrics that account for
the proportion of problems solvable by a strategy are very use-
ful. For the DSN-US distribution, DSN–S measures are valid
– those which account for the proportion of problems solvable
become even more important.

In the DSN application satisfying as many project
constraints as possible is key. This behavioral preference can
be expressed by a utility function negatively related to the
number of constraints relaxed before solving the problem. As
the scheduler produces schedules that satisfy more constraints,
the utility of the problem solver on that problem increases. We
characterize this preference by making utility the negative of
the number of constraints relaxed by the scheduler before solv-
ing a problem. If a general constraint was relaxed several times
before LR-26 was able to solve the problem, the value of the
schedule reflects each of these separate relaxations.

3.3 HEURISTICS FOR LR-26 ANI) LR-26R
We have implemented a number of search heuristics for

1.R–26. ‘1’hcse search heuristics provide possible strategies to
insert into the schedule construction control points described
in Section 2.4: lagrangian weight search, constraint selection,
extension generation, and child ordering. Heuristic strategies
for the Lagrangian Weight Settings include: full weight search,
search only at the top–level search node, no weight search, or
subgradient optimization. Heuristic strategies for constraint
selection involve analyzing the topology of the constraint
graph to capture strategies such as: prefer constraints with
views that satisfy many constraints, penalize constraints with
views that conflict with many other views, prefer constraints
with few views, prefer constraints that are almost satisfied.
There are currently two heuristic strategies for extending
schedules. The original method developed by Colin Bell in-
volves creating a child for each view in the constraint, with that
view forced IN. The systematic method selects a single view
in the constraint and creates two children, one with the view
forced IN, one with the view forced OUT. The search child or-
dering methods analyze the topology of the constraint graph in
a manner similar to the constraint sort methods to implement
such strategies as: prefer those children that force IN views
which assist in satisfying many constraints, penalize those
children that force IN views which conflict with many other
views, prefer those children that force IN views which conflict
with many other views.

We have implemented a number of heuristic strategies for
selecting constraints to relax in LR-26R, These heuristics can
bc viewed as applying to the three control points described in
Section 2.4: 1) focus type – focussing on dead-ends or
constraints, 2) focus–method – determining which constraints

to prefer relaxing, 3) stcI>–method – determining how many
constraint to relax, and 4) relaxation–method – how to relax
each constraint selected.

The focus type determines whether the system foeusses on
dead-end records or individual constraints. The focussing
method determines which constraints or dead-ends are best
suited for relaxation and produces an ordering on constraints
or dcadcmds in the scheduling problem. Examples of heuris-
tic methods for this control point are depth first (focus on those
constraints participating in the most recent dead-end found),
smallest clique (focus on those constraints that participate in
dead-ends involving the fewest constraints), and most-eonl-
monly--occurring (focus on those constraints that appear in the
most dead-ends). We are currently experimenting with a num-
ber of other heuristics that involve factors such as project prio-
rities and congestion of the constraint graph.

The step method determines how the ordering generated by
the focussing method is used to relax constraints. Currently we
are experimenting with two general step methods: break-
through and k–beam. Breakthrough uses the focussing meth-
od to order dead-ends and then relaxes every constraint in the
dead-end, K–beam relaxes the k most preferred constraints.

The relaxation method determines how each constraint se-
lected for relaxation in the previous phases will actually be re-
laxed. Methods for determining how to relax these constraints
include averaging the coefficients on the left hand side of the
constraint and decrementing the right hand side constant by
this average, decrementing by the minimum or maximum val-
ue of the left hand side, or by looking at a measure of how many
views must be forced in to satisfy the constraint.

3.4 EMPIRICAL RESULTS
In order to assess the effectiveness of our general approach

to solving CSP problems as applied to scheduling we have eva-
luated LR-26 and LR-26R extensively on all three of theDSN
problem distributions described in Section 3.1. The remainder
of this section describes thcresults of this evaluation and draws
some conclusions on the promise of adaptive problem-solving
for this problem domain.

In order to test if there is a significant variation in expected
utility for different heuristic strategies for LR-–26 we devel-
oped 52 additional heuristic search strategies to augment the
single strategy derived by the human expert (Bell 1993). Fig-
ure 2 shows in histogram format the number of strategies with
each average CPU problem-solving time on each of the prob-
lem distributions DSN–S and DSN-US (recall that for this
problem set the utility = – CPU seconds) as estimated over
1000 problems. The single human expert derived strategy had
an average performance of 165 CPU seconds on DSN–US and
57 CPU seconds on DSN–S. Other related work (Gratch et al.
93a) included using machine learning techniques to automati-
cally search this space of strategies to find good heuristic strat-
egies, the average utility of machine derived strategies was 147
CPU seconds for DSN-US and 27 CPU seconds for DSN-S.

The second set of tests is to verify that there is a significant
variation in the expected utility using the different relaxation
heuristics with LR-26R. Figure 2 shows the number of relax-

4’

,

aticm strate~ics with their average number of constraints re-
laxed (recafi that the utility for thi~ problem distribution is – the
number of relaxations required) as estimated over 100 prob-
lems. ‘1’here is no human expert derived strategy for this prob-
lcm. Again, in related work (Gratch et al. 93b) machine
learning techniques were used to find good strategies for relax-
ing constraints – the average number of constraints relaxed for
the average machine derived strategies for this distribution is
44, whereas the average for all defined strategies is 137.

4 DISCUSSION AND CONCLUSIONS
Wc now briefly describe a number of areas of current work.

The current measure for schedule quality (negative the number
of constraints relaxed), is syntactic at the constraint level. Un-
fortunately, not satisfying different constraints that appear
identical at the constraint level can have widely differing ef-
fects in the real world. For example, the constraint that the
maximum time bet ween communications with a particular sat-
ellite should be no greater than a time amount T (such as every
possible 24 hour pcriod)is represented constraint–wise by tak-
ing all 24 hour periods, for each such period, constructing a set
constraint stating that at least one view representing an alloca-
tion of an antenna to that spacecraft must be in the schedule.
Thus, if views v? V4 vs and vb were the only views in a 24–hour
period communicating with the satellite, there would bc the set
constraint Cl V3 + V4 + V5 + Vfj 21. Another set constraint C2
for anotbcr 24–hour period might look like V9 + VICI + VI I + VIZ
>1. However, depending upon the other views and constraints
in the problem, relaxing constraint Cl might allow a schedule
with a gap of 28 hours between communications with the satel-
lite, while relaxing constraint C2might allow agapof 38 hours
between communications with the satellite. This distinction
can only be captured by mapping the schedule back into the
real–time space. Another important area for work is enabling
LR-26R to use more sophisticated analysis techniques in se-
lecting constraints for relaxation such as bottleneck analysis.

Wc have described an iterative constraint–relaxation ap-
proach to finding satisficing solutions to problems with unsat-
isfiable sets of constraints. In our approach the scheduler uses
heuristics to progressively relax problem constraints until the
problem becomes satisfiable in an effort to find a solution that
satisfies the most important constraints (in terms of maximiz-
ing a utility function). We presented empirical results of ap-
plying these techniques to the problem of scheduling
spacecraft communications for JPLINASA antenna resources.

Rcfcrcnccs
C. Ii. Bell, 1993 “Scheduling Deep Space Network Data

Transmissions: A I.agrangian Relaxation Approach,” Proc, of
(hc SI’111 Conf, on Applications of AI 1993: Knowlcdge-
bascd Systems in Acrospacc and Industry, Orlando, FL.

R. Dcchtcr, 1992, “Constraint Networks,”in Encyclope-
dia of Artificial Inte[ligencc, Stuart C Shapiro (cd.), Wiley.

M. Fisher, 1981, “The Lagrangian Relaxation Method for
Solving Integer Programming Problems;’ Management S’ci-
CIICC 27, 1.

J. Gratch and S. Chien, 1993, “Imarning Search Control
Knowledge for the Deep Space Network Scheduling Problem:
I;xtcndcd Report and Guide to Software,” Tech. Rep.
UIUCDCS-R-93-1 789, Dept. of Comp. Sci,, Univ. of Illi-
nois, Urbana, 11,.

J. Gratch, S. Chien, and G. F. DcJong, 1993a’’Learning
Search Control Knowledge for Deep Space Network Schedul-
ing,” Proc, Int, Conf, on Machine Learning, Amherst, MA.

J. Gratch, S. Chien, and G, F, DcJong, 1993b “Learning
Search Control Knowledge to improve Schedule Quality,”
Procccdings of the IJCA193 Workshop on Production
Planning Scheduling and Control, Chamberry, France.

M. Held and R, M. Karp, 1970, ” “The Traveling Sales-
man Problem and Minimum Spanning Trees”,” Operations
Research 18, 1138-1162.

A . Mackwortb, 1992, “Constraint Satisfaction,’”’in
Encyclopedia ofArt, Int,, Stuart C Shapiro (ed.),Wiley.

D, McDern~ott, 1991, “A general framework for reason
maintenance,” Artificial Intclligcncc SO, 289–329.

S. Minton, 1988, I~arning Search Control Knowledge:
An Explanation-Based Approach, Kluwer, Norwell, MA,

S. Minton, M. Johnston, A. Philips, & P. Laird, 1992,
“Minimizing Conflicts: A Heuristic Repair Method for
Constraint Satisfaction and Scheduling Problems,” Artificial
Intclligcncc 58, 161-205.

N. Sadeh & M. Fox, 1990, “Variable and Value Ordering
Heuristics for Activity-based Jo&shop Scheduling;’ Proc,
4th Int. Conf. on Itxpcrt Systems in Prod. and Operations
Management, Hilton Head, SC,

S. Smith&C. Chcng, 1993, “Slack-based Heuristics for
Constraint–satisfaction Scheduling;’ Proc. AAA193, Wash.,
D C .

H. A. Taha, 1982, Operations Research: An Introdnc-
don, Macmillan Publishing Co., Inc., 1982.

Ave. CPU Sec. DSN-US Ave CPU Sac. DSN-S

l r i -
16

1 14

~ I I

g 10

g’12
g 10
IA8
56

I I

j , j .,,, ~1~

:: ● , mm+B+- ‘ o ■
*4

& o&o&o&o,+ O&o;
g:oo ~g ~

r42b0210:p& O) aam ~&~ m o
~,~m

. _ . ..r
NC-J -J I,?ID t.

Ave. CPU Seconds Ave. CPU Sac.

Figure 2: Empirical Results

Ave. Relexationa DSN-R

30.40 40.50 50-60 60+

Ave. # of Relaxation

—

